CS 250B: Modern Computer Systems

Cache-Efficient Algorithms

Sang-Woo Jun

Back To The Matrix Multiplication Example

- ☐ Blocked matrix multiplication recap
 - O C1 sub-matrix = A1×B11 + A1×B21 + A1×B31 ...
 - Intuition: One full read of B^T per S rows in A. Repeated N/S times
- \square Best performance when $S^2 \sim = Cache size$
 - Machine-dependent magic number!

Back To The Matrix Multiplication Example

- \square For sub-block size S × S -> N * N * (N/S) reads. What S do we use?
 - Optimized for L1? (32 KiB for me, who knows for who else?)
 - If S*S exceeds cache, we lose performance
 - If S*S is too small, we lose performance
- ☐ Do we ignore the rest of the cache hierarchy?
 - Say S optimized for L3,
 S × S multiplication is further divided into T×T blocks for L2 cache
 - T × T multiplication is further divided into U×U blocks for L1 cache
 - 0 ...

Solution: Cache Oblivious Algorithms

- ☐ No explicit knowledge of cache architecture/structure
 - Except that one exists, and is hierarchical
 - Also, "tall cache assumption", which is natural
- ☐ Still (mostly) cache optimal
- ☐ Typically recursive, divide-and-conquer

Tall cache assumption: B² < cM for a small c ex) Modern Intel L1: M: 64 KiB, B: 16 B

Shorter cache with larger lines can't efficiently divide data into small blocks

Aside: Even More Important With Storage/Network

- ☐ Latency difference becomes even larger
 - Cache: ~5 ns
 - DRAM: 100+ ns
 - Network: 10,000+ ns
 - Storage: 100,000+ ns
- ☐ Access granularity also becomes larger
 - Cache/DRAM: Cache lines (64 B)
 - Storage: Pages (4 KB 16 KB)

Applications of Interest

- ☐ Matrix multiplication
- ☐ Merge Sort
- ☐ Stencil Computation
- ☐ Trees And Search

☐ Many more exit (of course), but these are the one I selected

Cache Optimized Matrix Multiplication

☐ How to make sure we use an optimal S, for all cache levels?

Recursive Matrix Multiplication

8 multiply-adds of $(n/2) \times (n/2)$ matrices Recurse down until very small

Performance Analysis

☐ Work:

- Recursion tree depth is log₂(N), each node fan-out is 8
- $\circ 8^{\log_2 N} = N^{\log_2 8} = N^3$
- Same amount of work!

☐ Cache misses:

- Recurse tree for cache access has depth log(N)-1/2(log(cM))
 - (Because we stop recursing at n² < cM for a small c)
- o So number of leaves = $8^{\log N 1/2 \log cM} = N^{\log 8} \div cM^{1/2 \log 8} = N^3/cM^{3/2}$
- \circ At leaf, we load cM/B cache lines
- Total cache lines read = $\theta(\frac{n^3}{BM^{1/2}})$ <- Optimal

Also, logN function call overhead is not high

Performance Oblivious to Cache Size

Steven G. Johnson, "Experiments with Cache-Oblivious Matrix Multiplication for 18.335," MIT Applied Math

Bonus: Cache-Oblivious Matrix Transpose

☐ Also possible to define recursively

Α

A₁₁ A₁₂ A₂₁

 A^T

Applications of Interest

- Matrix multiplication
- ☐ Trees And Search
- ☐ Merge Sort
- ☐ Stencil Computation

Trees And Search

- ☐ Binary Search Trees are cache-ineffective
 - o e.g., Searching for 72 results in 3 cache line reads
 - Not to mention trees in the heap!

Each traversal pretty much hits new cache line: Θ(Log(N)) cache lines read

Better Layout For Trees

☐ Tree can be organized into locally encoded sub-trees

Much better cache characteristics!

We want cache-obliviousness:
 How to choose the size of sub-tree?

Recursive Tree Layout: van Emde Boas Layout

☐ Recursively organized binary tree Needs to be balanced to be efficient ceiling(h/4) Recurses until sub-tree is size 1 ceiling(h/2) In terms of cache access ceiling(h/4) Α Recursion leaf has cache line bytes Sub-tree height: log(B) Traverses $\log_B N$ leaf (green) trees $\frac{\text{ceiling}(h/4)}{h}$ ceiling(h/2) ceiling(h/4)

Performance Evaluations Against Binary Tree

1 GHz Pentium III (Coppermine)256 KB cache1 GB DRAM

high8, high16: 8 or 16 children per node

Tree size

Performance Evaluations Against Binary Tree And B-Tree

* High1024: 1024 elements per node, to make use of the whole cache line (B-Tree)

Question: How do we optimize N in HighN? Databases use N optimized for storage page

Note: Storage access not explicitly handled! Letting swap handle storage management

Figure 8: Beyond main memory

More on the van Emde Boas Tree

- ☐ Actually a tricky data structure to do inserts/deletions
 - Tree needs to be balanced to be effective
 - van Emde Boas trees with van Emde Boas trees as leaves?
- ☐ Good thing to have, in the back of your head!

Applications of Interest

- Matrix multiplication
- ☐ Trees And Search
- ☐ Merge Sort
- ☐ Stencil Computation

Merge Sort

Source: https://imgur.com/gallery/voutF, created by morolin

Merge Sort Cache Effects

- ☐ Depth-first binary merge sort is relatively cache efficient
 - Log(N) full accesses on data, for blocks larger than M
 - \circ n × log $(\frac{n}{M})$
- ☐ Binary merge sort of higher fan-in (say, R) is more cache-efficient
 - Using a tournament of mergers!
 - \circ n × log_R($\frac{n}{M}$)
- ☐ Cache obliviousness: how to choose R?
 - Too large R spills merge out of cache -> Thrash -> Performance loss!

Lazy K-Merger

- ☐ Again, recursive definition of mergers!
- ☐ Each sub-merger has k³ element output buffer
- lacktriangle Second level has $\sqrt{k}+1$ sub-mergers
 - \circ \sqrt{k} sub-mergers feeding into 1 sub-merger
 - \circ Each sub-merger has \sqrt{k} inputs
 - $\circ k^{3/2}$ -element buffer per bottom sub-merger
 - Recurses until very small fan-in (two?)

Lazy K-Merger

Procedure Fill(v):

```
while v's output buffer is not full
if left input buffer empty
    Fill(left child of v)
if right input buffer empty
    Fill(right child of v)
perform one merge step
```

- \Box Each k merger fits in k^2 space
- Ideal cache effects!
 - Proof too complex to show today...
- ☐ What should k be?
 - Given N elements, $k = N^{(1/3)}$ "Funnelsort"

In-Memory Funnelsort Empirical Performance

Uniform pairs - AMD Athlon

In-Memory Funnelsort Empirical Performance

Uniform pairs - Pentium 4

In-Storage Funnelsort Empirical Performance

Applications of Interest

- Matrix multiplication
- ☐ Trees And Search
- ☐ Merge Sort
- ☐ Stencil Computation

Stencil Computation

- ☐ Example: Heat diffusion
 - Uses parabolic partial differential equation to simulate heat diffusion

$$rac{\partial u}{\partial t} = lpha \left(rac{\partial^2 u}{\partial x^2} + rac{\partial^2 u}{\partial y^2} + rac{\partial^2 u}{\partial z^2}
ight)$$

Heat Equation In Stencil Form

 \square Simplified model: 1-dimensional heat diffusion $\frac{\partial u}{\partial t} = \alpha \left(\frac{\partial^2 u}{\partial x^2} \right)$

$$rac{\partial u}{\partial t} = lpha \left(rac{\partial^2 u}{\partial x^2}
ight)$$

$$\frac{\partial u}{\partial t} = \lim_{\Delta t \to 0} \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t}$$

$$\frac{\partial u}{\partial t} \approx \frac{u(x, t + \Delta t) - u(x, t)}{\Delta t}$$

$$u_x(x + \Delta x, t) \approx \frac{u(x + \Delta x, t) - u(x, t)}{\Delta x}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u_x}{\partial x}$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u_x}{\partial x}$$

$$\approx \frac{u_x(x+\Delta x,t) - u_x(x,t)}{\Delta x}$$

$$\approx \frac{\frac{u(x+\Delta x,t)-u(x,t)}{\Delta x}}{\Delta x} - \frac{\frac{u(x,t)-u(x-\Delta x,t)}{\Delta x}}{\Delta x}$$

$$\frac{u(x,t+\Delta t)-u(x,t)}{\Delta t}\approx k\frac{u(x+\Delta x,t)-2u(x,t)+u(x-\Delta x,t)}{(\Delta x)^2} \qquad = \qquad \frac{u(x+\Delta x,t)-2u(x,t)+u(x-\Delta x,t)}{(\Delta x)^2}$$

$$u(x, t + \Delta t) \approx u(x, t) + \alpha \left[u(x + \Delta x, t) - 2u(x, t) + u(x - \Delta x, t) \right]$$

A 3-point Stencil

$$u(x, t + \Delta t) \approx u(x, t) + \alpha \left[u(x + \Delta x, t) - 2u(x, t) + u(x - \Delta x, t) \right]$$

- \Box u(x, t + Δ t) can be calculated using u(x, t), u(x + Δ x, t), u(x Δ x, t)
- ☐ A "stencil" updates each position to using surrounding values as input
 - This is a 1D 3-point stencil
 - 2D 5 point, 2D 9 point, 3D 7 point,
 3D 25-point stencils popular
 - Popular for simulations, including fluid dynamics, solving linear equations and PDEs

Some Important Stencils

[1] 19-point 3D Stencil for Lattice Boltzmann Method flow simulation

[2] 25-point 3D stencil for seismic wave propagation applications

Cache Behavior of Naïve Loops

☐ Using the 1D 3-point stencil

Unless x is small enough, there is no cache reuse

☐ Continuing the theme, can we recursively process data in a cache-

optimal way?

Cache Efficient Processing: Trapezoid Units

- ☐ Computation in a trapezoid is either:
 - Self-contained, does not require anything from outside(), or
 - Only uses data that has been computed and ready (, after ____)

Recursion #1: Space Cut

- \Box If width >= height × 2
 - Cut the trapezoid through the center using a line of slope -1
 - Process left, then right

Recursion #2: Time Cut

- \Box If width < height × 2
 - Cut the trapezoid with a horizontal line through the center
 - Process bottom, then top

Cache Analysis

- ☐ Intuitively, trapezoids are split until they are of size M (cache size)
- \Box Data read = $\Theta(NT/M)$
 - \circ Cache lines read = $\Theta(NT/MB)$
 - o Good!

Parallelism-Aware Cutting

- ☐ Vanilla method not good for parallelism
 - Three splits have strict dependencies...
- Space cuts can be made parallelism-friendly!
 - Bottom two first, top one next
- Effects on parallel scalability
 - Difference in impact of four cores
 - Why? DRAM bandwidth bottleneck!

Code	Time		
Serial looping	128.95s	1	1.93x
Parallel looping	66.97s	5	1.95X
Serial trapezoidal	66.76s	1	3.96x
Parallel trapezoidal	16.86s	\	3.90X

Performance scaling with four cores Source: 2008-2018 by the MIT 6.172 Lecturers

Some adventures in 2D

Goal: Fill out temp and then have results at the bottom of temp

"temp" represents a 3-D array! (x,y,time)

No Dependencies For Corner

Calculate Blocks With Satisfied Dependencies

