## CS 250B: Modern Computer Systems

## Cache-Efficient Algorithms

Sang-Woo Jun

## Back To The Matrix Multiplication Example

$\square$ Blocked matrix multiplication recap

- C 1 sub-matrix $=\mathrm{A} 1 \times \mathrm{B} 11+\mathrm{A} 1 \times \mathrm{B} 21+\mathrm{A} 1 \times \mathrm{B} 31 \ldots$
- Intuition: One full read of $B^{\top}$ per $S$ rows in A. Repeated $N / S$ times
$\square$ Best performance when $\mathrm{S}^{2} \sim=$ Cache size
- Machine-dependent magic number!



## Back To The Matrix Multiplication Example

For sub-block size $\mathrm{S} \times \mathrm{S}->\mathrm{N}^{*} \mathrm{~N}^{*}(\mathrm{~N} / \mathrm{S})$ reads. What S do we use?

- Optimized for L1? (32 KiB for me, who knows for who else?)
- If $S^{*}$ S exceeds cache, we lose performance
- If $S^{*} S$ is too small, we lose performance
$\square$ Do we ignore the rest of the cache hierarchy?
- Say S optimized for L3, $\mathrm{S} \times \mathrm{S}$ multiplication is further divided into $\mathrm{T} \times \mathrm{T}$ blocks for L 2 cache
- $\mathrm{T} \times \mathrm{T}$ multiplication is further divided into $\mathrm{U} \times \mathrm{U}$ blocks for L 1 cache

○ ...

## Solution: Cache Oblivious Algorithms

$\square$ No explicit knowledge of cache architecture/structure

- Except that one exists, and is hierarchical
- Also, "tall cache assumption", which is natural
$\square$ Still (mostly) cache optimal
Typically recursive, divide-and-conquer

Tall cache assumption: $\mathrm{B}^{2}<\mathrm{CM}$ for a small C ex) Modern Intel L1: M: 64 KiB, B: 16 B

Shorter cache with larger lines can't efficiently divide data into small blocks


## Aside: Even More Important With Storage/Network

$\square$ Latency difference becomes even larger

- Cache: ~5 ns
o DRAM: 100+ns
- Network: 10,000+ ns
- Storage: 100,000+ns
$\square$ Access granularity also becomes larger
- Cache/DRAM: Cache lines (64 B)
- Storage: Pages (4 KB - 16 KB)


## Applications of Interest

$\square$ Matrix multiplication
$\square$ Merge Sort
$\square$ Stencil Computation
$\square$ Trees And Search

Many more exit (of course), but these are the one I selected

## Cache Optimized Matrix Multiplication

How to make sure we use an optimal $S$, for all cache levels?


## Recursive Matrix Multiplication



## 8 multiply-adds of $(n / 2) \times(n / 2)$ matrices Recurse down until very small

## Performance Analysis

$\square$ Work:

- Recursion tree depth is $\log _{2}(\mathrm{~N})$, each node fan-out is 8
- $8^{\log _{2} N}=N^{\log _{2} 8}=N^{3}$
- Same amount of work!

Cache misses:

- Recurse tree for cache access has depth $\log (N)-1 / 2(\log (c M))$
- (Because we stop recursing at $\mathrm{n}^{2}<\mathrm{cM}$ for a small c)
- So number of leaves $=8^{\log N-1 / 2 \log c M}=N^{\log 8} \div c M^{1 / 2 \log 8}=N^{3} / c M^{3 / 2}$
- At leaf, we load $c M / B$ cache lines
- Total cache lines read $=\theta\left(\frac{n^{3}}{B M^{1 / 2}}\right)<$ - Optimal


## Performance Oblivious to Cache Size

Double precision, 2.66 GHz Intel Core 2 Duo


## Bonus: Cache-Oblivious Matrix Transpose

$\square$ Also possible to define recursively


## Applications of Interest

$\square$ Matrix multiplication
$\square$ Trees And Search
$\square$ Merge Sort
I Stencil Computation

## Trees And Search

$\square$ Binary Search Trees are cache-ineffective

- e.g., Searching for 72 results in 3 cache line reads
- Not to mention trees in the heap!


Each traversal pretty much hits new cache line: $\Theta(\log (N))$ cache lines read

## Better Layout For Trees

$\square$ Tree can be organized into locally encoded sub-trees

- Much better cache characteristics!
- We want cache-obliviousness: How to choose the size of sub-tree?



## Recursive Tree Layout: van Emde Boas Layout

$\square$ Recursively organized binary tree

- Needs to be balanced to be efficient
- Recurses until sub-tree is size 1
$\square$ In terms of cache access
- Recursion leaf has cache line bytes
- Sub-tree height: $\log (\mathrm{B})$
- Traverses $\log _{B} N$ leaf (green) trees ceiling(h/4) ceiling(h/2)

$$
\text { ceiling }(\mathrm{h} / 4)
$$



## Performance Evaluations Against Binary Tree



## Performance Evaluations Against Binary Tree And B-Tree



* High1024: 1024 elements per node, to make use of the whole cache line ( B -Tree)

Question: How do we optimize N in HighN?
Databases use N optimized for storage page

Note: Storage access not explicitly handled! Letting swap handle storage management

Figure 8: Beyond main memory

## More on the van Emde Boas Tree

$\square$ Actually a tricky data structure to do inserts/deletions

- Tree needs to be balanced to be effective
- van Emde Boas trees with van Emde Boas trees as leaves?

Good thing to have, in the back of your head!

## Applications of Interest

$\square$ Matrix multiplication
$\square$ Trees And Search
$\square$ Merge Sort
$\square$ Stencil Computation

## Merge Sort

Depth-first Breadth-first

|  |  |
| :---: | :---: |
|  |  |

## Merge Sort Cache Effects

$\square$ Depth-first binary merge sort is relatively cache efficient

- $\log (\mathrm{N})$ full accesses on data, for blocks larger than $M$
- $\mathrm{n} \times \log \left(\frac{n}{M}\right)$

Binary merge sort of higher fan-in (say, R) is more cache-efficient

- Using a tournament of mergers!
- $\mathrm{n} \times \log _{R}\left(\frac{n}{M}\right)$

Cache obliviousness: how to choose R?

- Too large R spills merge out of cache -> Thrash -> Performance loss!



## Lazy K-Merger

$\square$ Again, recursive definition of mergers!
$\square$ Each sub-merger has $\mathrm{k}^{3}$ element output buffer
$\square$ Second level has $\sqrt{k}+1$ sub-mergers

- $\sqrt{k}$ sub-mergers feeding into 1 sub-merger
- Each sub-merger has $\sqrt{k}$ inputs
- $k^{3 / 2}$-element buffer per bottom sub-merger
- Recurses until very small fan-in (two?)



## Lazy K-Merger

Procedure Fill(v):

| while $v$ 's output buffer is not full |
| :--- |
| if left input buffer empty |
| Fill(left child of $v$ ) |
| if right input buffer empty |
| Fill(right child of $v$ ) |
| perform one merge step |

$\square$ Each k merger fits in $\mathrm{k}^{2}$ space
$\square$ Ideal cache effects!

- Proof too complex to show today...
$\square$ What should k be?


○ Given $N$ elements, $\boldsymbol{k}=\boldsymbol{N}^{(1 / 3)}$ - "Funnelsort"

## In-Memory <br> Funnelsort Empirical Performance



## In-Memory <br> Funnelsort Empirical Performance



## In-Storage <br> Funnelsort Empirical Performance



## Applications of Interest

$\square$ Matrix multiplication
$\square$ Trees And Search
$\square$ Merge Sort
$\square$ Stencil Computation

## Stencil Computation

$\square$ Example: Heat diffusion

- Uses parabolic partial differential equation to simulate heat diffusion

$$
\frac{\partial u}{\partial t}=\alpha\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
$$

## Heat Equation In Stencil Form

Simplified model: 1-dimensional heat diffusion $\frac{\partial u}{\partial t}=\alpha\left(\frac{\partial^{2} u}{\partial x^{2}}\right)$ $\frac{\partial u}{\partial t}=\lim _{\Delta t \rightarrow 0} \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}$
$\frac{\partial u}{\partial t} \approx \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}$

$$
u_{x}(x+\Delta x, t) \approx \frac{u(x+\Delta x, t)-u(x, t)}{\Delta x}
$$

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u_{x}}{\partial x}
$$

$$
\approx \frac{u_{x}(x+\Delta x, t)-u_{x}(x, t)}{\Delta x}
$$

$$
\approx \frac{\frac{u(x+\Delta x, t)-u(x, t)}{\Delta x}}{\Delta x}-\frac{u(x, t)-u(x-\Delta x, t)}{\Delta x}
$$

$$
\begin{aligned}
& \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t} \approx k^{\frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{(\Delta x)^{2}} \longleftarrow}=\frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{(\Delta x)^{2}} \\
& u(x, t+\Delta t) \approx u(x, t)+\alpha[u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)]
\end{aligned}
$$

## A 3-point Stencil

$u(x, t+\Delta t) \approx u(x, t)+\alpha[u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)]$
$\square \mathrm{u}(\mathrm{x}, \mathrm{t}+\Delta \mathrm{t})$ can be calculated using $\mathrm{u}(\mathrm{x}, \mathrm{t}), \mathrm{u}(\mathrm{x}+\Delta \mathrm{x}, \mathrm{t}), \mathrm{u}(\mathrm{x}-\Delta \mathrm{x}, \mathrm{t})$
$\square$ A "stencil" updates each position using surrounding values as input

- This is a 1D 3-point stencil
- 2D 5 point, 2D 9 point, 3D 7 point, 3D 25-point stencils popular
- Popular for simulations, including fluid dynamics, solving linear equations and PDEs



## Some Important Stencils


[1] 19-point 3D Stencil for
Lattice Boltzmann Method flow simulation

[2] 25-point 3D stencil for seismic wave propagation applications
[1] Peng, et. al., "High-Order Stencil Computations on Multicore Clusters" [2] Gentryx, Wikipedia

## Cache Behavior of Naïve Loops

Using the 1D 3-point stencil

- Unless $x$ is small enough, there is no cache reuse

Continuing the theme, can we recursively process data in a cacheoptimal way?


## Cache Efficient Processing: Trapezoid Units

Computation in a trapezoid is either:

- Self-contained, does not require anything from outside( $\square$ ), or
- Only uses data that has been computed and ready ( $\quad$, after $\square$



## Recursion \#1: Space Cut

- If width >= height $\times 2$
- Cut the trapezoid through the center using a line of slope -1
- Process left, then right



## Recursion \#2: Time Cut

$\square$ If width < height $\times 2$

- Cut the trapezoid with a horizontal line through the center
- Process bottom, then top



## Cache Analysis

Intuitively, trapezoids are split until they are of size M (cache size)
$\square$ Data read $=\Theta$ (NT/M)

- Cache lines read $=\Theta$ (NT/MB)
- Good!


## Parallelism-Aware Cutting

$\square$ Vanilla method not good for parallelism

- Three splits have strict dependencies...
$\square$ Space cuts can be made parallelism-friendly!
- Bottom two first, top one next


Effects on parallel scalability

- Difference in impact of four cores
- Why? DRAM bandwidth bottleneck!
$\left.\begin{array}{|l|r|}\hline \text { Code } & \text { Time } \\ \hline \text { Serial looping } & 128.95 \mathrm{~s} \\ \hline \text { Parallel looping } & 66.97 \mathrm{~s} \\ \hline \text { Serial trapezoidal } 1.93 x \\ \hline \text { Parallel trapezoidal } & 66.76 \mathrm{~s} \\ \hline\end{array}\right\} 3.96 x$


## Some adventures in 2D

## Goal: Fill out temp and then have results at the bottom of temp



No Dependencies For Corner


## Calculate Blocks With Satisfied Dependencies



